Annoying Precision

Previously we proved a theorem due to Gabriel characterizing categories of modules as cocomplete abelian categories with a compactprojectivegenerator, where “generator” meant “every object is a colimit of finite direct sums of copies of the object.”

But we also used “generator” to mean “every object is a colimit of copies of the object,” and noted that these conditions are not equivalent: as this MO question discusses, the abelian group $latex mathbb{Z}$ satisfies the first condition but not the second. More generally, as Mike Shulman explains here, there are in fact many inequivalent definitions of “generator” in category theory.

The goal of this post is to sort through a few of these definitions, which turn out to be totally ordered in strength, and find additional hypotheses under which they agree. As an application we’ll restate Gabriel’s theorem using weaker definitions of “generator” and give a more…

View original post 4,470 more words


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s